Newent Community School and Sixth Form Centre

A Level Mathematics

Algebra Task Booklet

Name:

Enrolment on the A level Mathematics course is dependent upon this booklet being completed and returned to your teacher at the start of your first lesson. The solutions are included at the back to help you gauge your understanding. As the solutions are included it is a requirement that sufficient working is shown in the booklet.

You will be assessed on the skills included in this booklet in early September. Continuation on the course is dependent upon you scoring at least 75% on the assessment.

The booklet will be returned and should then be kept for reference during the course.

Chapter 1: REMOVING BRACKETS

To remove a single bracket, we multiply every term in the bracket by the number or the expression on the outside:

Examples

1)

2)

$$
\begin{aligned}
-(2 x-3) & =(-2)(2 x)+(-2)(-3) \\
& =-4 x+6
\end{aligned}
$$

To expand two brackets, we must multiply everything in the first bracket by everything in the second bracket. We can do this in a variety of ways, including

* the smiley face method
* FOIL (Fronts Outers Inners Lasts)
* using a grid.

Examples:

1)

$$
(x+1)(x+2)=x(x+2)+1(x+2)
$$

or

$$
\begin{aligned}
& =x^{2}+2+2 x+x
\end{aligned}
$$

or

	x	1
x	x^{2}	x
2	$2 x$	2

$$
\begin{aligned}
(x+1)(x+2) & =x^{2}+2 x+x+2 \\
& =x^{2}+3 x+2
\end{aligned}
$$

2)

$$
\begin{aligned}
(x-2)(2 x+3) & =x(2 x+3)-2(2 x+3) \\
& =2 x^{2}+3 x-4 x-6 \\
& =2 x^{2}-x-6
\end{aligned}
$$

or

or

	x	-2
$2 x$	$2 x^{2}$	$-4 x$
3	$3 x$	-6

$$
\begin{aligned}
(2 x+3)(x-2) & =2 x^{2}+3 x-4 x-6 \\
& =2 x^{2}-x-6
\end{aligned}
$$

EXERCISE A Multiply out the following brackets and simplify.

1. $7(4 x+5)$
2. $-3(5 x-7)$
3. $5 a-4(3 a-1)$
4. $4 y+y(2+3 y)$
5. $3 x-(x+4)$
6. $5(2 x-1)-(3 x-4)$
7. $(x+2)(x+3)$
8. $(t-5)(t-2)$
9. $(2 x+3 y)(3 x-4 y)$
10. $4(x-2)(x+3)$
11. $(2 y-1)(2 y+1)$
12. $(3+5 x)(4-x)$

Two Special Cases

Perfect Square:

Difference of two squares:
$(x+a)^{2}=(x+a)(x+a)=x^{2}+2 a x+a^{2}$
$(2 x-3)^{2}=(2 x-3)(2 x-3)=4 x^{2}-12 x+9$

$$
\begin{aligned}
(x-a)(x+a) & =x^{2}-a^{2} \\
(x-3)(x+3) & =x^{2}-3^{2} \\
& =x^{2}-9
\end{aligned}
$$

EXERCISE B Multiply out

1. $(x-1)^{2}$
2. $(3 x+5)^{2}$
3. $(7 x-2)^{2}$
4. $(x+2)(x-2)$
5. $(3 x+1)(3 x-1)$
6. $(5 y-3)(5 y+3)$

Chapter 2: LINEAR EQUATIONS

When solving an equation, you must remember that whatever you do to one side must also be done to the other. You are therefore allowed to

- add the same amount to both side
- subtract the same amount from each side
- multiply the whole of each side by the same amount
- divide the whole of each side by the same amount.

If the equation has unknowns on both sides, you should collect all the letters onto the same side of the equation.

If the equation contains brackets, you may need to start by expanding the brackets.
A linear equation is an equation that contains numbers and terms in x. A linear equation does not contain any x^{2} or x^{3} terms.

More help needed? Try this link
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-simplelinear-2009-1.pdf

Example 1: Solve the equation $\quad 64-3 x=25$

Solution: There are various ways to solve this equation. One approach is as follows:
Step 1: Add $3 x$ to both sides (so that the x term is positive):
$64=3 x+25$
Step 2: Subtract 25 from both sides:
$39=3 x$
Step 3: Divide both sides by 3:
$13=x$
So the solution is $x=13$.

Example 2: Solve the equation $6 x+7=5-2 x$.

Solution:

Step 1: Begin by adding $2 x$ to both sides
$8 x+7=5$ (to ensure that the x terms are together on the same side)

Step 2: Subtract 7 from each side:

$$
8 x=-2
$$

Step 3: Divide each side by 8 :

$$
x=-1 / 4
$$

Exercise A: Solve the following equations, showing each step in your working:

1) $2 x+5=19$
2) $5 x-2=13$
3) $11-4 x=5$
4) $5-7 x=-9$
5) $11+3 x=8-2 x$
6) $7 x+2=4 x-5$

Example 3: Solve the equation $\quad 2(3 x-2)=20-3(x+2)$
Step 1: Multiply out the brackets: $\quad 6 x-4=20-3 x-6$ (taking care of the negative signs)

Step 2: Simplify the right hand side:
$6 x-4=14-3 x$
Step 3: Add 3x to each side:
$9 x-4=14$
Step 4: Add 4:
$9 x=18$
Step 5: Divide by 9:
$x=2$

Exercise B: Solve the following equations.

1) $5(2 x-4)=4$
2) $4(2-x)=3(x-9)$
3) $8-(x+3)=4$
4) $14-3(2 x+3)=2$

EQUATIONS CONTAINING FRACTIONS

When an equation contains a fraction, the first step is usually to multiply through by the denominator of the fraction. This ensures that there are no fractions in the equation.

Example 4: Solve the equation $\frac{y}{2}+5=11$

Solution:

Step 1: Multiply through by 2 (the denominator in the fraction): $y+10=22$
Step 2: Subtract 10:
$y=12$

Example 5: Solve the equation $\frac{1}{3}(2 x+1)=5$

Solution:

Step 1: Multiply by 3 (to remove the fraction) $2 x+1=15$
Step 2: Subtract 1 from each side $2 x=14$
Step 3: Divide by 2 $x=7$

When an equation contains two fractions, you need to multiply by the lowest common denominator.
This will then remove both fractions.

Example 6: Solve the equation $\frac{x+1}{4}+\frac{x+2}{5}=2$

Solution:

Step 1: Find the lowest common denominator:

The smallest number that both and 5 divide into is 20 .
$\frac{20(x+1)}{4}+\frac{20(x+2)}{5}=40$
$\frac{2^{5} \sigma(x+1)}{A}+\frac{2^{4} \sigma(x+2)}{\not x}=40$
$5(x+1)+4(x+2)=40$
$5 x+5+4 x+8=40$
$9 x+13=40$
$9 x=27$
$x=3$

Example 7: Solve the equation $x+\frac{x-2}{4}=2-\frac{3-5 x}{6}$
Solution: The lowest number that 4 and 6 go into is 12 . So we multiply every term by 12 :

$$
12 x+\frac{12(x-2)}{4}=24-\frac{12(3-5 x)}{6}
$$

Simplify
$12 x+3(x-2)=24-2(3-5 x)$
Expand brackets
$12 x+3 x-6=24-6+10 x$
Simplify
$15 x-6=18+10 x$
Subtract 10x
$5 x-6=18$
Add 6
$5 x=24$
Divide by 5
$x=4.8$

Exercise C: Solve these equations

1) $\quad \frac{1}{2}(x+3)=5$
2) $\frac{2 x}{3}-1=\frac{x}{3}+4$
3) $\frac{y}{4}+3=5-\frac{y}{3}$
4) $\frac{x-2}{7}=2+\frac{3-x}{14}$

Exercise C (continued)

5) $\frac{7 x-1}{2}=13-x$
6) $\frac{y-1}{2}+\frac{y+1}{3}=\frac{2 y+5}{6}$
7) $2 x+\frac{x-1}{2}=\frac{5 x+3}{3}$
8) $2-\frac{5}{x}=\frac{10}{x}-1$

FORMING EQUATIONS

Example 8: Find three consecutive numbers so that their sum is 96.
Solution: Let the first number be n, then the second is $n+1$ and the third is $n+2$.
Therefore $\quad n+(n+1)+(n+2)=96$

$$
\begin{aligned}
& 3 n+3=96 \\
& 3 n=93 \\
& n=31
\end{aligned}
$$

So the numbers are 31,32 and 33 .

Exercise D:

1) Find 3 consecutive even numbers so that their sum is 108 .
2) The perimeter of a rectangle is 79 cm . One side is three times the length of the other. Form an equation and hence find the length of each side.
3) Two girls have 72 photographs of celebrities between them. One gives 11 to the other and finds that she now has half the number her friend has.
Form an equation, letting n be the number of photographs one girl had at the beginning. Hence find how many each has now.

Chapter 3: SIMULTANEOUS EQUATIONS

An example of a pair of simultaneous equations is $\begin{array}{lll}3 x+2 y=8 & \bigcirc \\ & 5 x+y=11 & \bigcirc\end{array}$
In these equations, x and y stand for two numbers. We can solve these equations in order to find the values of x and y by eliminating one of the letters from the equations.

In these equations it is simplest to eliminate y. We do this by making the coefficients of y the same in both equations. This can be achieved by multiplying equation O by 2 , so that both equations contain $2 y$:

$$
\begin{aligned}
3 x+2 y & =8 & & O \\
10 x+2 y & =22 & & 2 \times \mathrm{O}=0
\end{aligned}
$$

To eliminate the y terms, we subtract equation O from equation O. We get: $7 x=14$

$$
\text { i.e. } \quad x=2
$$

To find y, we substitute $x=2$ into one of the original equations. For example if we put it into O :

$$
\begin{aligned}
10+y & =11 \\
y & =1
\end{aligned}
$$

Therefore the solution is $x=2, y=1$.
Remember: You can check your solutions by substituting both x and y into the original equations.

More help needed? Try this link
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-simultaneous-2009-1.pdf

Exercise:

Solve the pairs of simultaneous equations in the following questions:

$$
\text { 1) } \quad \begin{aligned}
& x+2 y=7 \\
& 3 x+2 y=9
\end{aligned}
$$

2) $x+3 y=0$
$3 x+2 y=-7$
3) $3 x-2 y=4$
4) $\quad \begin{aligned} & 9 x-2 y=25 \\ & 4 x-5 y=7\end{aligned}$
$2 x+3 y=-6$
5) $4 a+3 b=22$ $5 a-4 b=43$
6) $3 p+3 q=15$
$2 p+5 q=14$

Chapter 4: FACTORISING

Common factors

We can factorise some expressions by taking out a common factor.
Example 1: Factorise $12 x-30$
Solution: 6 is a common factor to both 12 and 30 . We can therefore factorise by taking 6 outside a bracket:

$$
12 x-30=6(2 x-5)
$$

Example 2: Factorise $6 x^{2}-2 x y$
Solution: $\quad 2$ is a common factor to both 6 and 2. Both terms also contain an x.
So we factorise by taking $2 x$ outside a bracket.

$$
6 x^{2}-2 x y=2 x(3 x-y)
$$

Example 3: Factorise $9 x^{3} y^{2}-18 x^{2} y$
Solution: $\quad 9$ is a common factor to both 9 and 18.
The highest power of x that is present in both expressions is x^{2}.
There is also a y present in both parts.
So we factorise by taking $9 x^{2} y$ outside a bracket:

$$
9 x^{3} y^{2}-18 x^{2} y=9 x^{2} y(x y-2)
$$

Example 4: Factorise $3 x(2 x-1)-4(2 x-1)$
Solution: There is a common bracket as a factor.
So we factorise by taking $(2 x-1)$ out as a factor.
The expression factorises to $(2 x-1)(3 x-4)$

Exercise A

Factorise each of the following

1) $3 x+x y$
2) $4 x^{2}-2 x y$
3) $p q^{2}-p^{2} q$
4) $3 p q-9 q^{2}$
5) $2 x^{3}-6 x^{2}$
6) $8 a^{5} b^{2}-12 a^{3} b^{4}$
7) $5 y(y-1)+3(y-1)$

Factorising quadratics

Simple quadratics: Factorising quadratics of the form $x^{2}+b x+c$
The method is:
Step 1: Form two brackets ($x \ldots)(x \ldots)$
Step 2: Find two numbers that multiply to give c and add to make b. These two numbers get written at the other end of the brackets.

Example 1: Factorise $x^{2}-9 x-10$.
Solution: We need to find two numbers that multiply to make -10 and add to make -9 . These numbers are -10 and 1 .
Therefore $x^{2}-9 x-10=(x-10)(x+1)$.

General quadratics: Factorising quadratics of the form $a x^{2}+b x+c$

The method is:
Step 1: Find two numbers that multiply together to make $a c$ and add to make b.
Step 2: Split up the $b x$ term using the numbers found in step 1.
Step 3: Factorise the front and back pair of expressions as fully as possible.
Step 4: There should be a common bracket. Take this out as a common factor.
Example 2: Factorise $6 x^{2}+x-12$.
Solution: We need to find two numbers that multiply to make $6 \times-12=-72$ and add to make 1 . These two numbers are -8 and 9 .

Therefore,

$$
\begin{aligned}
6 x^{2}+x-12 & =6 \underbrace{6 x^{2}-8 x}+\underbrace{9 x-12} \\
& =2 x(3 x-4)+3(3 x-4 \\
& =(3 x-4)(2 x+3)
\end{aligned}
$$

$$
=2 x(3 x-4)+3(3 x-4) \quad \text { (the two brackets must be identical) }
$$

Difference of two squares: Factorising quadratics of the form $x^{2}-a^{2}$

Remember that $x^{2}-a^{2}=(x+a)(x-a)$.
Therefore: $\quad x^{2}-9=x^{2}-3^{2}=(x+3)(x-3)$

$$
16 x^{2}-25=(2 x)^{2}-5^{2}=(2 x+5)(2 x-5)
$$

Also notice that: $\quad 2 x^{2}-8=2\left(x^{2}-4\right)=2(x+4)(x-4)$ and

$$
3 x^{3}-48 x y^{2}=3 x\left(x^{2}-16 y^{2}\right)=3 x(x+4 y)(x-4 y)
$$

Factorising by pairing

We can factorise expressions like $2 x^{2}+x y-2 x-y$ using the method of factorising by pairing:

$$
\begin{aligned}
2 x^{2}+x y-2 x-y & =x(2 x+y)-1(2 x+y) & & \text { (factorise front and back pairs, ensuring both } \\
& =(2 x+y)(x-1) & & \text { brackets are identical) }
\end{aligned}
$$

More help needed? Try this link
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-factorisingquadratics-2009-1.pdf

Exercise B

Factorise

1) $x^{2}-x-6$
2) $x^{2}+6 x-16$
3) $2 x^{2}+5 x+2$
4) $2 x^{2}-3 x \quad$ (factorise by taking out a common factor)
5) $3 x^{2}+5 x-2$
6) $2 y^{2}+17 y+21$
7) $7 y^{2}-10 y+3$
8) $10 x^{2}+5 x-30$
9) $4 x^{2}-25$
10) $x^{2}-4 x y+3 y^{2}$
11) $4 x^{2}-12 x+8$
12) $16 m^{2}-81 n^{2}$
13) $4 y^{3}-9 a^{2} y$
14) $8(x+1)^{2}-2(x+1)-10$

Chapter 5: CHANGING THE SUBJECT OF A FORMULA

We can use algebra to change the subject of a formula. Rearranging a formula is similar to solving an equation - we must do the same to both sides in order to keep the equation balanced.

Example 1: Make x the subject of the formula $y=4 x+3$.
Solution:

$$
\begin{gathered}
y=4 x+3 \\
y-3=4 x \\
\frac{y-3}{4}=x
\end{gathered}
$$

Subtract 3 from both sides:

So $x=\frac{y-3}{4}$ is the same equation but with x the subject.

Example 2: Make x the subject of $y=2-5 x$
Solution: Notice that in this formula the x term is negative.

Add $5 x$ to both sides
Subtract y from both sides
Divide both sides by 5

$$
y=2-5 x
$$

$5 x=2-y$
$x=\frac{2-y}{5}$
$y+5 x=2 \quad$ (the x term is now positive)

Example 3: The formula $C=\frac{5(F-32)}{9}$ is used to convert between ${ }^{\circ}$ Fahrenheit and ${ }^{\circ}$ Celsius.
We can rearrange to make F the subject.

$$
C=\frac{5(F-32)}{9}
$$

Multiply by 9
$9 C=5(F-32) \quad$ (this removes the fraction)
Expand the brackets
$9 C=5 F-160$
Add 160 to both sides
$9 C+160=5 F$
Divide both sides by 5

$$
\frac{9 C+160}{5}=F
$$

Therefore the required rearrangement is $F=\frac{9 C+160}{5}$.

Exercise A

Make x the subject of each of these formulae:

1) $y=7 x-1$
2) $y=\frac{x+5}{4}$
3) $4 y=\frac{x}{3}-2$
4) $y=\frac{4(3 x-5)}{9}$

Rearranging equations involving squares and square roots
Example 4: Make x the subject of $x^{2}+y^{2}=w^{2}$

Solution:

Subtract y^{2} from both sides:
Square root both sides:

$$
x^{2}+y^{2}=w^{2}
$$

$x^{2}=w^{2}-y^{2} \quad$ (this isolates the term involving x)
$x= \pm \sqrt{w^{2}-y^{2}}$
Remember that you can have a positive or a negative square root. We cannot simplify the answer any more.

Example 5: Make a the subject of the formula $t=\frac{1}{4} \sqrt{\frac{5 a}{h}}$

Solution:
$t=\frac{1}{4} \sqrt{\frac{5 a}{h}}$
Multiply by 4

$$
4 t=\sqrt{\frac{5 a}{h}}
$$

Square both sides
Multiply by h :
$16 t^{2}=\frac{5 a}{h}$

Divide by 5 :
$16 t^{2} h=5 a$
$\frac{16 t^{2} h}{5}=a$

Exercise B:

Make t the subject of each of the following

1) $\quad P=\frac{w t}{32 r}$
2) $P=\frac{w t^{2}}{32 r}$
3) $\quad V=\frac{1}{3} \pi t^{2} h$
4) $P=\sqrt{\frac{2 t}{g}}$
5) $\quad P a=\frac{w(v-t)}{g}$
6) $r=a+b t^{2}$

More difficult examples

Sometimes the variable that we wish to make the subject occurs in more than one place in the formula. In these questions, we collect the terms involving this variable on one side of the equation, and we put the other terms on the opposite side.

Example 6: Make t the subject of the formula $a-x t=b+y t$
Solution:

$$
a-x t=b+y t
$$

Start by collecting all the t terms on the right hand side:
Add $x t$ to both sides:

$$
a=b+y t+x t
$$

Now put the terms without a t on the left hand side:
Subtract b from both sides:

$$
\begin{aligned}
& a-b=y t+x t \\
& a-b=t(y+x)
\end{aligned}
$$

Factorise the RHS:
Divide by $(y+x): \quad \frac{a-b}{y+x}=t$
So the required equation is

$$
t=\frac{a-b}{y+x}
$$

Example 7: Make W the subject of the formula $T-W=\frac{W a}{2 b}$
Solution: This formula is complicated by the fractional term. We begin by removing the fraction:

Multiply by $2 b$:
Add $2 b W$ to both sides:
Factorise the RHS:

$$
2 b T-2 b W=W a
$$

$$
2 b T=W a+2 b W \quad \text { (this collects the W's together) }
$$

$$
2 b T=W(a+2 b)
$$

Divide both sides by $a+2 b$:

$$
W=\frac{2 b T}{a+2 b}
$$

More help needed? Try this link
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-transposition-2009-1.pdf

Exercise C

Make x the subject of these formulae:

1) $a x+3=b x+c$
2) $3(x+a)=k(x-2)$
3) $y=\frac{2 x+3}{5 x-2}$
4) $\frac{x}{a}=1+\frac{x}{b}$

Chapter 6: SOLVING QUADRATIC EQUATIONS

A quadratic equation has the form $a x^{2}+b x+c=0$.
There are two methods that are commonly used for solving quadratic equations:

* factorising
* the quadratic formula

Note that not all quadratic equations can be solved by factorising. The quadratic formula can always be used however.

Method 1: Factorising

Make sure that the equation is rearranged so that the right hand side is 0 . It usually makes it easier if the coefficient of x^{2} is positive.

Example 1: Solve $x^{2}-3 x+2=0$
Factorise $\quad(x-1)(x-2)=0$
Either $(x-1)=0$ or $(x-2)=0$
So the solutions are $x=1$ or $x=2$
Note: The individual values $x=1$ and $x=2$ are called the roots of the equation.

Example 2: Solve $x^{2}-2 x=0$
Factorise: $\quad x(x-2)=0$
Either $x=0$ or $(x-2)=0$
So $x=0$ or $x=2$

Method 2: Using the formula

Recall that the roots of the quadratic equation $a x^{2}+b x+c=0$ are given by the formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example 3: Solve the equation $2 x^{2}-5=7-3 x$
Solution: First we rearrange so that the right hand side is 0 . We get $2 x^{2}+3 x-12=0$ We can then tell that $a=2, b=3$ and $c=-12$.
Substituting these into the quadratic formula gives:

$$
x=\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times(-12)}}{2 \times 2}=\frac{-3 \pm \sqrt{105}}{4} \quad \text { (this is the surd form for the solutions) }
$$

If we have a calculator, we can evaluate these roots to get: $x=1.81$ or $x=-3.31$
More help needed? Try this link
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-quadeqns-2009-1.pdf

EXERCISE

1) Use factorisation to solve the following equations:
a) $x^{2}+3 x+2=0$
b) $x^{2}-3 x-4=0$
c) $x^{2}=15-2 x$
2) Find the roots of the following equations:
a) $x^{2}+3 x=0$
b) $\quad x^{2}-4 x=0$
c) $\quad 4-x^{2}=0$
3) Solve the following equations either by factorising or by using the formula:
a) $6 x^{2}-5 x-4=0$
b) $8 x^{2}-24 x+10=0$
4) Use the formula to solve the following equations to 3 significant figures. Some of the equations can't be solved.
a) $x^{2}+7 x+9=0$
b) $6+3 x=8 x^{2}$
c) $4 x^{2}-x-7=0$
d) $x^{2}-3 x+18=0$
e) $3 x^{2}+4 x+4=0$
f) $\quad 3 x^{2}=13 x-16$

Chapter 7: INDICES

Basic rules of indices

y^{4} means $y \times y \times y \times y$.
4 is called the index (plural: indices), power or exponent of y.

There are 3 basic rules of indices:

1) $\quad a^{m} \times a^{n}=a^{m+n}$
e.g. $\quad 3^{4} \times 3^{5}=3^{9}$
2) $\quad a^{m} \div a^{n}=a^{m-n}$
e.g. $\quad 3^{8} \times 3^{6}=3^{2}$
3) $\quad\left(a^{m}\right)^{n}=a^{m n}$
e.g. $\quad\left(3^{2}\right)^{5}=3^{10}$

Further examples

$$
\begin{aligned}
& y^{4} \times 5 y^{3}=5 y^{7} \\
& 4 a^{3} \times 6 a^{2}=24 a^{5} \\
& 2 c^{2} \times\left(-3 c^{6}\right)=-6 c^{8} \\
& 24 d^{7} \div 3 d^{2}=\frac{24 d^{7}}{3 d^{2}}=8 d^{5}
\end{aligned}
$$

$$
\text { (multiply the numbers and multiply the } a \text { 's) }
$$

$$
\text { (multiply the numbers and multiply the } c \text { 's) }
$$

(divide the numbers and divide the d terms i.e. by subtracting the powers)

Exercise A

Simplify the following:

1) $b \times 5 b^{5}=$
(Remember that $b=b^{1}$)
2) $3 c^{2} \times 2 c^{5}=$
3) $b^{2} c \times b c^{3}=$
4) $2 n^{6} \times\left(-6 n^{2}\right)=$
5) $8 n^{8} \div 2 n^{3}=$
6) $\quad d^{11} \div d^{9}=$
7) $\left(a^{3}\right)^{2}=$
8) $\left(-d^{4}\right)^{3}=$

More complex powers

Zero index:

Recall from GCSE that

$$
a^{0}=1 .
$$

This result is true for any non-zero number a.
Therefore $\quad 5^{0}=1 \quad\left(\frac{3}{4}\right)^{0}=1 \quad(-5.2304)^{0}=1$

Negative powers

A power of -1 corresponds to the reciprocal of a number, i.e. $a^{-1}=\frac{1}{a}$
Therefore $\quad 5^{-1}=\frac{1}{5}$

$$
0.25^{-1}=\frac{1}{0.25}=4
$$

$$
\left(\frac{4}{5}\right)^{-1}=\frac{5}{4} \quad \text { (you find the reciprocal of a fraction by swapping the top }
$$

and bottom over)

This result can be extended to more general negative powers: $a^{-n}=\frac{1}{a^{n}}$.
This means:

$$
\begin{aligned}
& 3^{-2}=\frac{1}{3^{2}}=\frac{1}{9} \\
& 2^{-4}=\frac{1}{2^{4}}=\frac{1}{16} \\
& \left(\frac{1}{4}\right)^{-2}=\left(\left(\frac{1}{4}\right)^{-1}\right)^{2}=\left(\frac{4}{1}\right)^{2}=16
\end{aligned}
$$

Fractional powers:

Fractional powers correspond to roots:

$$
a^{1 / 2}=\sqrt{a} \quad a^{1 / 3}=\sqrt[3]{a} \quad a^{1 / 4}=\sqrt[4]{a}
$$

In general:

$$
a^{1 / n}=\sqrt[n]{a}
$$

Therefore:

$$
8^{1 / 3}=\sqrt[3]{8}=2 \quad 25^{1 / 2}=\sqrt{25}=5 \quad 10000^{1 / 4}=\sqrt[4]{10000}=10
$$

A more general fractional power can be dealt with in the following way: $\quad a^{m / n}=\left(a^{1 / n}\right)^{m}$ So $\quad 4^{3 / 2}=(\sqrt{4})^{3}=2^{3}=8$

$$
\begin{aligned}
& \left(\frac{8}{27}\right)^{2 / 3}=\left(\left(\frac{8}{27}\right)^{1 / 3}\right)^{2}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9} \\
& \left(\frac{25}{36}\right)^{-3 / 2}=\left(\frac{36}{25}\right)^{3 / 2}=\left(\sqrt{\frac{36}{25}}\right)^{3}=\left(\frac{6}{5}\right)^{3}=\frac{216}{125}
\end{aligned}
$$

More help needed? Try this link

Exercise B:

Find the value of:

1) $4^{1 / 2}$
2) $27^{1 / 3}$
3) $\left(\frac{1}{9}\right)^{\frac{1}{2}}$
4) 5^{-2}
5) 18^{0}
6) 7^{-1}
7) $\quad 27^{2 / 3}$
8) $\left(\frac{2}{3}\right)^{-2}$
9) $8^{-2 / 3}$
10) $(0.04)^{1 / 2}$
11) $\left(\frac{8}{27}\right)^{2 / 3}$
12) $\left(\frac{1}{16}\right)^{-3 / 2}$

Simplify each of the following:
13) $2 a^{1 / 2} \times 3 a^{5 / 2}$
14) $x^{3} \times x^{-2}$
15) $\left(x^{2} y^{4}\right)^{1 / 2}$

Practice Booklet Test

You will sit a test similar to this one in early September.

You may NOT use a calculator

If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

1. Expand and simplify
(a) $(2 x+3)(2 x-1)$
(b) $(a+3)^{2}$
(c) $4 x(3 x-2)-x(2 x+5)$
2. Factorise
(a) $x^{2}-7 x$
(b) $y^{2}-64$
(c) $2 x^{2}+5 x-3$
(d) $6 t^{2}-13 t+5$
3. Simplify
(a) $\frac{4 x^{3} y}{8 x^{2} y^{3}}$
(b) $\frac{3 x+2}{3}+\frac{4 x-1}{6}$
4. Solve the following equations
(a) $\frac{h-1}{4}+\frac{3 h}{5}=4$
(b) $x^{2}-8 x=0$
(c) $p^{2}+4 p=12$
5. Write each of the following as single powers of x and / y
(a) $\frac{1}{x^{4}}$
(b) $\left(x^{2} y\right)^{3}$
(c) $\frac{x^{5}}{x^{-2}}$
6. Work out the values of the following, giving your answers as fractions
(a) 4^{-2}
(b) 10^{0}
(c) $\left(\frac{8}{27}\right)^{\frac{1}{3}}$
7. Solve the simultaneous equations

$$
\begin{aligned}
& 3 x-5 y=-11 \\
& 5 x-2 y=7
\end{aligned}
$$

8. Rearrange the following equations to make x the subject
(a) $v^{2}=u^{2}+2 \mathrm{a} x$
(b) $\mathrm{V}=\frac{1}{3} \pi x^{2} \mathrm{~h}$
(c) $\mathrm{y}=\frac{x+2}{x+1}$
9. Solve $5 x^{2}-x-1=0$ giving your solutions in surd form

SOLUTIONS TO THE EXERCISES

CHAPTER 1:

Ex A

1) $28 x+35$
2) $-15 x+21$
3) $-7 a+4$
4) $6 y+3 y^{2}$
5) $2 x-4$
6) $7 x-1$
7) $x^{2}+5 x+6$
8) $t^{2}-7 t-10$
9) $6 x^{2}+x y-12 y^{2}$
10) $4 x^{2}+4 x-24$
11) $4 y^{2}-1$
12) $12+17 x-5 x^{2}$

Ex B

1) $x^{2}-2 x+1$
2) $9 x^{2}+30 x+25$
3) $49 x^{2}-28 x+4$
4) $x^{2}-4$
5) $9 x^{2}-1$
6) $25 y^{2}-9$

CHAPTER 2

Ex A

1) 7
2) 3
3) $11 / 2$
4) 2
5) $-3 / 5$
6) $-7 / 3$

Ex B

1) 2.4
2) 5
3) 1
4) $1 / 2$

Ex C
2) 15
3) $24 / 7$
4) $35 / 3$
5) 3
6) 2
7) $9 / 5$
8) 5

Ex D

1) $34,36,38$
2) $9.875,29.625$
3) 24,48

CHAPTER 3

1) $x=1, y=3$
2) $x=-3, y=1$
3) $x=0, y=-2$
4) $x=3, y=1$
5) $a=7, b=-2$
6) $p=11 / 3, q=4 / 3$

CHAPTER 4

Ex A

1) $x(3+y)$
2) $2 x(2 x-y)$
3) $p q(q-p)$
4) $3 q(p-3 q)$
5) $2 x^{2}(x-3)$
6) $4 a^{3} b^{2}\left(2 a^{2}-3 b^{2}\right)$
7) $(y-1)(5 y+3)$

Ex B

1) $(x-3)(x+2)$
2) $(x+8)(x-2)$
3) $(2 x+1)(x+2)$
4) $x(2 x-3)$
5) $(3 x-1)(x+2)$
6) $(2 y+3)(y+7)$
7) $(7 y-3)(y-1)$
8) $5(2 x-3)(x+2)$
9) $(2 x+5)(2 x-5)$
10) $(x-3)(x-y)$
11) $4(x-2)(x-1)$
12) $(4 m-9 n)(4 m+9 n)$
13) $y(2 y-3 a)(2 y+3 a)$
14) $2(4 x-1)(x+2)$

CHAPTER 5

Ex A

1) $x=\frac{y+1}{7}$
2) $x=4 y-5$
3) $x=3(4 y+2)$
4) $x=\frac{9 y+20}{12}$

Ex B

1) $t=\frac{32 r P}{w}$
2) $t= \pm \sqrt{\frac{32 r P}{w}}$
3) $t= \pm \sqrt{\frac{3 V}{\pi h}}$
4) $t=\frac{P^{2} g}{2}$
5) $t=v-\frac{P a g}{w}$
6) $t= \pm \sqrt{\frac{r-a}{b}}$

Ex C

1) $x=\frac{c-3}{a-b}$
2) $x=\frac{3 a+2 k}{k-3}$
3) $x=\frac{2 y+3}{5 y-2}$
4) $x=\frac{a b}{b-a}$

CHAPTER 6

1) a) $-1,-2$
b) $-1,4$
c) $-5,3$
2) a) $0,-3$
b) 0,4
c) $2,-2$
3) a) $-1 / 2,4 / 3$
b) $0.5,2.5$
4) a) $-5.30,-1.70$
f) no solutions
b) $1.07,-0.699$
c) $-1.20,1.45$
d) no solutions
e) no solutions

CHAPTER 7

Ex A

1) $5 b^{6}$
2) $6 c^{7}$
3) $b^{3} c^{4}$
4) $-12 n^{8}$
5) $4 n^{5}$
6) d^{2} 7) a^{6}
7) $-d^{12}$

Ex B

1) 2 2) 3
2) $1 / 3$
3) $1 / 25$
4) 1
5) $1 / 7$
6) 9
7) $9 / 4$
8) $1 / 4$
9) 0.2
10) $4 / 9$
11) 64
12) $6 a^{3}$ 14) x 15) $x y^{2}$

Test answers

Q1
a) $4 x^{2}+4 x-3$
b) $a^{2}+6 a+9$
c) $10 x^{2}-13 x$

Q2
a) $x(x-7)$
b) $(y+8)(y-8)$
c) $(2 x-1)(x+3)$
d) $(2 t-1)(3 t-5)$

Q3
a) $\frac{x}{2 y^{2}}$
b) $\frac{10 x+3}{6}$

Q4
a) $h=5$
b) $x=0, x=8$
c) $p=-6, p=2$

Q5
a) x^{-4}
b) $x^{6} y^{3}$
c) x^{7}

Q6
a) $1 / 16$
b) 1
c) $2 / 3$

Q7 $x=3, y=4$
Q8
a) $x=\frac{v^{2}-u^{2}}{2 a}$
b) $x=\sqrt{\frac{3 V}{\pi h}}$
c) $x=\frac{2-y}{y-1}$

Q9 $x=\frac{1 \pm \sqrt{21}}{10}$

Independent study and sources of help

www.nrich.org.uk
www.mathcentre.ac.uk
www.wolframalpha.com
www.mymaths.co.uk
www.furthermaths.org.uk
www.mathsalevel.com

Reading around the subject

Maths has a wide range of uses and applications, and can be used to model and explain the world we live in. Of course, there are some things in maths that we do (and love) just because we can (like climbing a mountain because it is there), and these can be fascinating and rewarding.
Here are some books you might find interesting. Try one and see what you think.

R Eastaway and J Wyndham, Why do buses come in threes?: The hidden mathematics of everyday life (2005)

R Eastaway and J Haigh, Beating the odds: The hidden Mathematics of Sport (2005)
R Eastaway, How Many Socks Make a Pair?: Surprisingly Interesting Maths (2011)
D Acheson, 1089 and All That: A Journey into Mathematics (2010)
M Du Sautoy, The Number Mysteries: A Mathematical Odyssey through Everyday Life (2011)
I Stewart, Seventeen Equations that changed the world (2012)
I Stewart, Professor Stewarts Hoarde of Mathematical Treasures (2010)

Other challenges

I expect you know how to do a Sudoku ... but ... do you know how to do a "Killer Sudoku"? They are far more satisfying and can be a bit addictive.
http://www.killersudokuonline.com/
See if you can solve some of the puzzles here
http://www.qbyte.org/puzzles/

